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The self-consistent Ornstein-Zernike approximation~SCOZA!, the generalized mean spherical approxima-
tion ~GMSA!, the modified hypernetted chain~MHNC! approximation, and the hierarchical reference theory
~HRT! are applied to the determination of thermodynamic and structural properties, and the phase diagram of
the hard-core Yukawa fluid~HCYF!. We investigate different Yukawa-tail screening lengthsl, ranging from
l51.8 ~a value appropriate to approximate the shape of the Lennard-Jones potential! to l59 ~suitable for a
simple one-body modelization of complex fluids like colloidal suspensions and globular protein solutions!. The
comparison of the results obtained with computer simulation data shows that at relatively lowl ’s all the
theories are fairly accurate in the prediction of thermodynamic and structural properties; as far as the phase
diagram is concerned, the SCOZA and HRT are able to predict the binodal line and the critical parameters in
a quantitative manner. Atl54 some discrepancies begin to emerge in the performances of the different
theoretical approaches: the MHNC remains, on the whole, reasonably accurate in predicting the energy and the
contact value of the radial distribution function; the SCOZA predicts well the equation of state up to the
highestl values investigated. The GMSA and the MHNC underestimate and overestimate, respectively, the
liquid coexisting density, while the SCOZA and HRT yield liquid branches that fall between the two former
theoretical predictions, although both appear to overestimate the critical temperature somewhat. At higherl ’s
the GMSA and MHNC binodals further worsen, while the SCOZA appears to remain usefully predictive. In
general, the predictions of all the theories tend to slightly worsen at low temperatures and high density. The
determination of the freezing line, performed by means of a one-phase ‘‘freezing criterion’’~due to other
authors! is not particularly satisfactory within either the SCOZA or the MHNC; the GMSA prediction for the
freezing line atl57 and 9 is instead able to follow in a qualitative manner the pattern of the solid-vapor
coexistence line as determined through computer simulation studies. The necessity of further assessments of
the freezing predictions is also discussed. Finally, versions of the GMSA, SCOZA, and HRT that can be
expected to be more accurate for interactions with extremely short-ranged attractions are identified.
@S1063-651X~99!10911-5#
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I. INTRODUCTION

The hard-core Yukawa fluid~HCYF! has been the objec
of a rather intense investigation in most recent years~see@1#
for a review!. One reason for such an interest is that for t
model one has available analytic and semianalytic theo
~see@1–6# and references quoted therein! that allow one a
rapid investigation of its physical properties; on the oth
hand, the potential parameters can easily be adjusted so
mimic more realistic interactions, such as, for instance,
Lennard-Jones potential@7#; the two circumstances allow
then one to predict in a fairly easy, albeit approximate, m
ner the properties of a number of real fluids.

The simplicity of the model has also prompted the asse
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ment of the performances of several theories against c
puter simulation data. Such comparisons have mainly c
cerned thermodynamic properties@8–10#, with estimates of
phase coexistence conditions and predictions of critical
havior @11–15#; in particular, the modified hypernetted cha
~MHNC @16#! approximation and the semianalytic se
consistent Ornstein-Zernike approximation~SCOZA
@4,5,15#! have been applied in the low-value regime of t
Yukawa screening parameterl @14,15#, with a satisfactory
reproduction of the liquid-vapor binodal line; the SCOZ
also provides a good description of the critical point regio
including the nonclassical critical exponent that describ
liquid-vapor coexistence@15,17#. The liquid-vapor coexist-
ence line and the critical exponents are also accurately
scribed by the hierarchical reference theory~HRT @18–20#!,
which incorporates the renormalization-group treatment
the critical region.

These studies have, however, been restricted to some
ic
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cific cases, and no systematic investigation of the accurac
different theories over wide ranges of temperatures, dens
and Yukawa screening parametersl has, to our knowledge
hitherto been performed. In particular, an assessment o
accuracy of various theoretical approaches at highl is still
lacking; such a parameter regime is worth investigating si
it corresponds to very short-ranged potentials, a situatio
which the phase diagram of the fluid undergoes profou
modifications, with the disappearance of a stable liquid ph
@11,12#. As documented in the current literature, a phase p
trait of this kind is of particular interest for the description
complex fluids like colloidal suspensions and protein so
tions ~see Ref.@21#, and references therein!; it has been ar-
gued, in fact, that the location of the binodal line just belo
the sublimation line, a configuration in which the metasta
critical point is very close to the vapor-solid phase transit
boundary, might represent the most favorable condition fo
controlled nucleation process in the fluid, and hence fo
regular growth of crystals@21,22#. The latter circumstance i
certainly of great interest in protein solutions; in these s
tems, in fact, the crystallization procedures do frequently
to yield crystals of large enough size and quality to allow
confident diffraction study of the molecular structure@23#.

In view of the above considerations, we have underta
an extensive investigation of the thermodynamic and str
tural properties, as well as of the phase diagram, of
HCYF, by assessing at the same time the performance
the most advanced theories presently available~both semi-
analytic and iteratively solvable!; we implement here a nu
merical solution procedure of a comprehensive form of
generalized mean spherical approximation~GMSA @2,24–
26#!, which also embodies, as additive equations, the th
modynamic consistency constraints descending from all
three routes connecting structure to thermodynamics
liquid-state theories@27#. The consistency is thus achieve
only in terms of internal conditions. We also apply th
MHNC theory, as well as simple versions of the SCOZA a
the HRT; the solution schemes for these theories have b
developed elsewhere by other authors.

Our analysis encompasses, in particular,l values ranging
from l.2, roughly corresponding to the Lennard-Jon
fluid, up to l.9, a realistic screening length for HCY
modelizations of colloidal suspensions and protein soluti
@12,28,29#. The determination of the binodal is performe
according to conventional procedures. The freezing line
determined on the basis of a one-phase ‘‘freezing criterio
proposed by other authors@30#. Comparison is made, when
ever possible, with phase diagrams obtained through c
puter simulation by other authors@11,12,15,31#, supple-
mented by the production of a number of new simulat
data for this same model.

The paper is organized as follows: theories and simula
schemes are described in Sec. II; the procedures for d
mining the lines of coexisting phases and the freezing
are briefly outlined in Sec. III. The results are reported a
discussed in Sec. IV. Section V contains our conclusions

II. MODEL, THEORIES, AND SIMULATION SCHEMES

We consider a fluid composed of hard-sphere particle
diameters, interacting through an attractive Yukawa tail; th
of
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interparticle potential is thus written as

v~r !5`, r ,s,
~1!

v~r !52se exp@2l~r 2s!#/r , r>s.

The properties of this model fluid are calculated in t
context of the MHNC approximation and versions of t
GMSA, the SCOZA, and the HRT, all of which are define
below.

As is well known, in the MHNC scheme@16#, the
Ornstein-Zernike equation

h~r !5c~r !1rE c~ ur2r 8u!h~r 8!dr 8, ~2!

where g(r ) is the radial distribution function~RDF! and
h(r )5g(r )21 andc(r ) are the pair and direct correlatio
function, respectively, is solved by means of the forma
exact closure

g~r !5exp@2bv~r !1h~r !2c~r !1B~r !#. ~3!

HereB(r ) is the bridge function of the system under stu
andb51/kBT.

We shall assume that the bridge function for the HCY
can be approximated by that of a hard-sphere fluid in
Percus-Yevick~PY! approximation. As usual in the MHNC
scheme, we choose the hard-core diameter entering the
nition of the PY bridge function so as to impose a~partial!
thermodynamic consistency constraint on the theory.

Specifically, we require the equality of the isotherm
compressibilities as calculated according to the virial a
compressibility route@27#; that is,

S b
]Pvir

]r D
T,r

512r c̃~q50!. ~4!

Here c̃(q50) is theq50 limit of the Fourier transform of
c(r ). The solution of the system of equations~2!, ~3! is ob-
tained through the well-known Gillan algorithm@32#.

In the GMSA @2,24–26# a closure to Eq.~2! is obtained
by observing that, because of Eq.~1!, one has

g~r !50, r ,s, ~5!

and by assuming

c~r !52bv~r !1K exp@2z~r 2s!#/r , r>s, ~6!

wherev(r ) is given by Eq.~1!, while K and z entering the
Yukawa function in Eq.~6! are used as adjustable paramet
in order to impose the internal thermodynamic consiste
of the theory. Specifically, we impose in the GMSA the s
isfaction of condition~4! and also

2S ]F

]VD
T

U

5Pvir, ~7!

where the left-hand side of Eq.~7! is the pressure obtaine
from the energy route by differentiating the Helmholtz fr
energyF, whose excess part with respect to the hard-sph
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fluid Fex is in turn obtained from the configurational ener
Uex through standard thermodynamic integration along
isochore path@27#; that is,

bFex~r!5E
0

b

Uex~b8,r!db8. ~8!

The isochore path integration starts from infinite tempe
ture (b50), corresponding to the hard-sphere limit of t
HCYF. The hard-sphere fluid free energy is in turn obtain
by integrating the equation of state along an isothermal p
at infinite temperature starting from zero density up to
density of interest; the Yukawa parametersK andz are pro-
gressively adjusted along the path so as to reproduce
Carnahan-Starling@33# pressure and compressibility at ea
thermodynamic point. The hard-sphere Helmholtz free
ergy has thus the Carnahan-Starling value.

We have implemented the solution of the GMSA in
fully numerical manner. Specifically, we have used Eq.~6!
as a closure relation in an iterative solution procedure of
integral equation~2!; the rationale for such a choice, whic
does not make use of any of the more direct semianal
solution schemes available in the literature, is that conditi
~4! and ~7! require in any case a numerical search of
consistency parameters; we have thus found it advantag
to incorporate their fulfilment in the same numerical proc
dure that solves Eqs.~2! and ~6!.

It is worthwhile at this point to note that Stell, Ho”ye, and
their coauthors have used the term GMSA in a generic se
applied to a family of approximations, all of which have th
common feature of supplementing the2bv(r ) term appear-
ing in a direct correlation functionc(r ) outside the core with
Yukawa terms. In some versions of the GMSA~for example,
those that have already been used to describe fluids
charged spheres and dipolar spheres@24,34#!, the amplitudes
and ranges of the Yukawa terms are adjusted to yield s
consistency with thermodynamics given by prescribed eq
tions of state that have been predetermined, rather tha
equations of state that are determined through the impos
of self-consistency, as is the case here. This latter form of
GMSA ~which can also be regarded as a SCOZA, as no
below! is more demanding computationally, especially in t
version used here that requires self-consistency among
energy, virial, and compressibility routes to thermodynam
The work reported here is the first quantitative study of t
particular version for the HCYF. An alternative version, i
troduced in Ref.@4#, that also involves consistency amon
the same three routes, has not yet been assessed.

The term SCOZA is also used by Ho”ye and Stell in a
generic sense to apply to approximations in which one
more state-dependent parameters are introduced into th
lation betweenc(r ) and2bv(r ) in such a way that thermo
dynamic self-consistency gives rise to a differential equat
for one of the parameters, the solution of which yields
thermodynamics of the system. In the version of SCO
used here, there is only one parameterA, multiplying the
2bv(r ) term outside the core; but there is a second te
also of Yukawa form, that represents the contribution toc(r )
outside the core from the hard-sphere core itself,
n
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c~r !52Abv~r !1KHSexp@2zHS~r 2s!#/r , r>s,
~9!

where we use the subscript HS to signify thatKHS and zHS
depend only on the presence of the hard-sphere core, i
pendent ofv(r ). The KHS and zHS are predetermined by
settingv(r )50 in Eq. ~9! and requiring that both the com
pressibility and the virial route to thermodynamics yield t
Carnahan-Starling equation of state for a hard-sphere fl
The A in Eq. ~9! is then obtained by requiring that the com
pressibility and energy routes yield the same thermodyn
ics, which requires the consistency condition

2
]

]b
c̃~q50!5

]2

]r2 S Uex

V D
T

. ~10!

This in turn induces a consistency condition uponA(r, b) in
the form of a partial-differential equation that must be solv
numerically. For the Yukawa fluid considered here, this
made simpler by the fact that within the closure~9! the rela-
tion between the inverse reduced compressibility 12r c̃(q
50) and the excess internal energyUex can be determined
analytically@2,3#. The solution procedure has been describ
in detail in Ref.@15#.

The designations SCOZA and GMSA as used by Ho”ye
and Stell are not mutually exclusive. In fact the GMSA i
vestigated here is identical to the more comprehensive
sion of the SCOZA developed by Ho”ye and Stell in Ref.@5#
that ensures self-consistency with respect to the virial eq
tion as well as the energy and compressibility equations.

For the sake of a more complete overview of theoreti
results, we also include the results of some calculations
formed within the HRT; this approach, which does not ha
the structure of the other liquid-state integral-equation th
ries, embodies the correct renormalization-group behavio
the liquid-vapor critical point is approached.

In the HRT the interparticle potential is first split into
short-range, repulsive contributionvR(r ) and a longer-
ranged, attractive onew(r ). For the hard-core plus tail inter
action considered here this is done trivially. The attract
part is then turned on in a gradual fashion by introducing
modified interactionwQ(r ), such that its Fourier componen
with wave vectors smaller than a certain cutoffQ are van-
ishing. In the resultingQ system, long-range fluctuations
with characteristic lengthL.1/Q are then strongly inhibited
As Q evolves fromQ5`, the interaction takes on its com
ponents of longer and longer wavelengths, until in the lim
Q→0 the fully interacting system is recovered. The cor
sponding evolution of the Helmholtz free energy is describ
by the exact equation

]

]Q S bFQ

V D5
Q2

4p2
lnS 11

bw̃~Q!

C̃Q~Q!
D , ~11!

wherew̃(k) is the Fourier transform of the attractive inte
action, andFQ andC̃Q(k) are straightforwardly related to th
Helmholtz free energyFQ and to the Fourier transform of th
direct correlation functioncQ(r ) of the Q system. Equation
~11! is closed by resorting to an approximation similar to E
~9!. Specifically, we assume
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gQ~r !50, r ,s, ~12!

CQ~r !5BQbw~r !1cR~r !, r>s,

wherecR is the direct correlation function of the hard-sphe
fluid, as given, for instance, by the Verlet-Weis parametri
tion @35#; andBQ is determined so as to satisfy the compre
ibility sum rule

C̃Q~k50!5
]2

]r2 S 2
bFQ

V D . ~13!

This can be regarded as a consistency condition between
compressibility route and a route~different from all the
above-mentioned ones! in which the thermodynamics is de
termined from the Helmholtz free energy as obtained fr
Eq. ~11!. The latter yields then a partial-differential equatio
for FQ , which is integrated numerically starting fromQ
5` down toQ→0. We refer the reader to the related liter
ture for more details@18–20#.

Finally, a number of conventional constant-temperatu
constant-volume Monte Carlo~MC @36#! simulations have
been performed. As detailed in Sec. IV, quite large syst
samples, enclosed in cubic boxes with periodic bound
conditions, are employed in this context, in order to get
curate estimates of various thermodynamic quantities of
terest. Whenever necessary long-range corrections have
adopted in order to correct for truncation effects at the b
boundaries on the radial distribution function. The isoth
mal compressibility is also calculated by generating
equation of state of the fluid through a series of const
volume simulations along an isotherm, with an accurate s
pling centered at the density of interest.

III. THEORETICAL PROCEDURES FOR THE
DETERMINATION OF THE PHASE DIAGRAM

The liquid-vapor coexistence curve is determined straig
forwardly in the HRT, since the conditions of chemical eq
librium between the two coexisting phases are implemen
by the theory itself. In fact, below the critical temperatu
this approach yields a vanishing inverse compressibility
rigorously flat isotherms inside a certain domain of the ph
plane, which is then identified with the coexistence regio

In the GMSA, MHNC, and SCOZA the determination
the liquid-vapor coexistence line is instead performed
equating the chemical potential at equal temperature
pressures on the liquid and vapor side of the binodal, res
tively. The chemical potential is obtained from the Helm
holtz free energy calculated either by integrating the press
along an isothermal path, or by integrating the configu
tional energy with respect to the inverse temperature al
an isochore path@see Eq.~8!#.

In implementing such a procedure, it happens that b
the MHNC and the GMSA solution algorithms fail to con
verge at a thermodynamic consistent solution in the crit
point region; as a consequence, we cannot display result
the binodal from these two theories on a restricted temp
ture range close to the critical temperature. In light of ear
results that have already come out of both theoretical
computational studies of HNC-type theories, this difficulty
-
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locating a binodal and critical point may well be intrinsic
such theories rather than an artifact of our numerical pro
dure~in the HNC approximation, for example, there appe
to be no critical point at which the compressibility comput
via the compressibility relation diverges@37,38#!. On the
other hand, the study of the analytic structure of the GM
made in@5# strongly suggests that the GMSA is an appro
mation for which the binodal is well defined in the critic
region and at a critical point, which can in principle be l
cated with arbitrarily high precision, just as in the SCOZA

By adopting an approach originally proposed in Ref.@30#,
we also locate the onset of freezing in our HCYF by mo
toring the behavior of the multiparticle residual entropy, d
fined as

Ds[sex2s2 , ~14!

wheresex is the the excess entropy per particle of the syst
in units of the Boltzmann constant, and

s252
1

2
rE $g~r !ln@g~r !#2g~r !11%dr . ~15!

According to previous results reported in the literatu
@30,39#, it turns out that the vanishing ofDs acts as a quite
sensitive indicator of the freezing transition in several on
component fluids. The possibility that this same conditi
can be associated with structural rearrangements that he
other types of phase separations has also been discussed
where@40#.

IV. RESULTS AND DISCUSSION

In what follows we shall measure the distance, the d
sity, and the temperature, ins, s23, ande/kB units, respec-
tively. Other quantities of interest are similarly expressed
the appropriate reduced units.

A. Thermodynamic and structural properties

The GMSA, MHNC, SCOZA@15#, and HRT predictions
for the HCYF with l51.8 are compared with one anoth
and with MC results obtained with the use of 2000 particl
Comparison with previous computer simulation data@8,10#,
obtained with a few hundred particles is also reported. Th
different temperatures,T51.0, 1.5, and 2.0, have been inve
tigated along the same isochorer50.80; as will appear in
Sec. IV B, the first state point (T51.0,r50.8) falls deep
inside the liquid pocket of the system; atT51.50 the system
is instead already in a supercritical dense phase. Therm
namic results are shown in Fig. 1.

Several comparisons between all four theories and si
lation have been performed also for the casel54, along the
isochorer50.816, a density that falls just before the free
ing line @11# ~see below! and at temperatures ranging fro
inside the liquid pocket of the phase diagram (0.5,T
,0.625) up to a supercritical state (T51.0). MC simula-
tions are performed on a sample composed of 1500 ato
Results are displayed in Fig. 2.

More extensive investigations have been performed
l59. GMSA, SCOZA, and MHNC predictions are assess
against MC data~obtained on a sample of 512 particle!
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along the isochoresr50.5 andr50.7, from T50.80, well
above the sublimation line~as estimated by other autho
@12#! to T50.45. Results are visualized in Fig. 3. Rad
distribution functions are collectively shown for alll ’s in-
vestigated in Fig. 4.

One first important feature of the results previously
ported is the accuracy of the MHNC approach~which in our

FIG. 1. Internal energy per particle, equation of stateg(s), and
the compressibility~in reduced units! for the HCYF with l51.8.
Symbols: circles, MHNC; triangles, GMSA; squares, SCOZA; d
monds, HRT; crosses, MC simulations. Error bars on the simula
data are smaller than the relative marker size.
l

-

scheme is implemented with the use of PY bridge functio!
in the prediction of both thermodynamic and structural qu
tities of the HCYF on a very wide range of Yukawa scree
ing parameters. In particular, the MHNC turns out to be a
to reproduce in a practically quantitative manner the simu
tion data for the energy at all thel ’s investigated, and on a
very wide range of temperatures and densities. The s
theory is slightly less accurate in predicting the pressure,
compressibility, and the contact values of the radial distrib
tion function. It seems remarkable that such a good per

-
n

FIG. 2. Same as Fig. 1 for the casel54.
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mance can be obtained by imposing a single thermodyna
consistency constraint.

The SCOZA, on the other hand, is the best of the theo
for directly predicting the equation of state, and it turns o
to retain its accuracy in this regard at the largerl ’s, even at
high density and low temperature. The SCOZAg(r ) is rea-
sonably good at lowl ’s but shows a trend toward overes
mating the amplitude of the oscillations, and also towa
moderately losing the phase whenl increases; the main de
ficiency is the poor estimate of the contact RDF at highl. In
relation to this point, it is to be noted that, although th
theory embodies an accurate representation of the h
sphere fluid properties at the level of the Carnahan-Star

FIG. 3. Equation of state and compressibility factor for t
HCYF with l59. Results along the isochoresr50.50~top panels!
andr50.70 ~bottom panels! are displayed. Symbols as in Fig. 1
ic

s
t

d

d-
g

equation of state, thermodynamic consistency is impo
only between fluctuation and energy pressures, without
explicit control on the virial~a quantity directly related to the
contact RDF!. This perhaps accounts for the poorg(s) esti-
mates at highl ’s.

The GMSA embodies in principle a full thermodynam
consistent treatment; it does not seem, however, that th
sufficient to make the theory accurate at alll ’s. The fact that
the compressibility predictions are relatively less accur
than the pressure and the contact RDF, together with
increasingly poor representation ofg(r ) at larger, indicate
that, despite the link to two consistency constraints,
adopted closure is not able to entirely cope with the interp
between short- and long-range effects in the interaction
tential. This is perhaps not surprising in light of the fact th
the two parametersK andz of the GMSA shown in Eq.~6!
are being asked to play an even more comprehensive t
modynamic role than the three SCOZA parametersA,KHS ,
and zHS , in Eq. ~9!. In the SCOZA, theKHS and zHS are
dedicated to accurately and self-consistently taking into
count the hard-core contribution to the thermodynamics,
that A need only accommodate itself to the energ
compressibility self-consistency of the thermodynamics t

FIG. 4. Radial distribution function for the HCYF with variou
l’s; thermodynamic state points and symbols, see figures.
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results from the additional presence of the soft tail of the p
potential. In the GMSA, on the other hand, theK andz must
assure that the thermodynamics of both the hard-core co
bution to v(r ) and its soft Yukawa tail together yield fu
virial-energy-compressibility self-consistency. This appe
to be too demanding a task to be met with high accuracy
the simple form of the single Yukawa term in Eq.~6!.

The HRT is accurate in the prediction of thermodynam
quantities up tol54. We have verified, however, that be
yond this value its accuracy decreases, as we shall see b
where other HRT results will be reported. Since Eq.~11! is
exact, this must be regarded as a consequence of the app
mation intrinsic in the closure relation~12!. The latter ap-

FIG. 5. Theoretical and finite-size scaling MC results for t
phase diagram of the HCYF withl51.8. Liquid-gas coexistence
dotted line, SCOZA; triangles, HRT; full circles, GMSA; ope
circles, MHNC; pluses, finite-size scaling MC of Ref.@15#. Ds
50 locus~freezing!: dotted line, SCOZA; full line, MHNC; dashed
line, GMSA; diamonds: freezing line forl52 according to
density-functional calculations of Ref.@43#.
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pears then to become less and less reliable asl increases.

B. Phase diagram

The phase diagram atl51.8 is shown in Fig. 5. It ap-
pears that all the theories reproduce rather satisfactorily
binodal curve as obtained in Ref.@15# through a finite-size
scaling Monte Carlo simulation technique@41#.

In particular, as already reported in Ref.@14#, the binodal
is well predicted by the MHNC, although the density of th
coexisting liquid phase is slightly overestimated. The opp
site behavior is shown by the GMSA. The results from t
SCOZA, previously obtained elsewhere@15#, and from the
HRT, turn out to be ‘‘bracketed’’ by the two former theorie
and appear as the most satisfactory. Both the SCOZA be
the critical point @15,17# and the HRT yield nonclassica
critical exponents; their estimates for the exponentb that
describes the shape of the binodal curve are 7/20~50.35!
and 0.345, respectively. The best renormalization-group
timate of this value is in the neighborhood of 0.327@42#. The
performances of the different theories on the vapor branc
the binodal are also very accurate, as seen in Fig. 5.

The critical parameters predicted by the various theo
at l51.8 are reported in Table I. As noted in Sec. II, t
MHNC and GMSA iterative algorithms become unable
yield a thermodynamic consistent solution for temperatu
too close to the critical one. For this reason the GMSA a
the MHNC entries are deduced from a power-law interpo
tion of the available points performed with the nonclassi
critical exponentb50.32, together with the application o
the law of rectilinear diameters. Atl51.8 the SCOZA@15#
and the HRT are in quantitative agreement with simulati
The GMSA is also quite accurate. The MHNC~also investi-
gated in Ref.@14#! is quite good but slightly inferior to the
other three theories.

Some of the theoretical trends emerging atl51.8 herald
more pronounced deviations from the simulation results
l54. This is visible in Fig. 6, where it appears that, on t
liquid side of the binodal, the MHNC moderately overes
mates and the GMSA sensibly underestimates, respectiv
the densities of the coexisting phases. The SCOZA is ag
in between the two theories; the same is true also for
HRT, but only up to intermediate temperatures. In fa
aboveT50.55 the HRT binodal is external to the MHNC
one. The critical temperature and density predicted by
5

TABLE I. Theoretical and simulation critical point parameters.

l51.8 l54.0 l57.0

Tcr rcr Tcr rcr Tcr rcr

MC 1.212~2!a 0.312~2!a 0.576~6!b 0.377~21!b 0.411~2!c 0.50 ~2!c

GMSA 1.199 0.312 0.576 0.324
MHNC 1.193 0.326 0.581 0.412
MHNCd 1.21 0.28
HRT 1.214 0.312 0.599 0.394 0.435 0.424
SCOZA 1.219 0.314 0.591 0.3895 0.419 0.457

aFinite-size scaling MC simulation of Ref.@15#.
bGibbs-ensemble MC simulations of Ref.@11#.
cGibbs-ensemble MC simulations of Ref.@12#.
dMHNC calculations with Verlet-Weis bridge functions of Ref.@14#.
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different theories are still quite satisfactory~see Table I!.
The case withl57 is now considered. The related resu

are shown in Fig. 7. Note that the computer simulation
sults, known from previous studies@12#, show the shift of the

FIG. 6. Theoretical and simulation results for the phase diag
of the HCYF with l54. Liquid-gas coexistence: horizontal bar
Gibbs-ensemble MC results of Ref.@11#; other symbols as in Fig. 5
Ds50 locus ~freezing line!: dash-dotted line, results of Ref.@12#
for l53.9; other symbols as in Fig. 5.

FIG. 7. Phase diagram for the HCYF withl57. Liquid-gas
coexistence: horizontal bars, Gibbs-ensemble MC results of
@12#; other symbols as in Fig. 5.Ds50 locus: diamonds, SCOZA
pluses, GMSA; crosses, MHNC; dashed line with squares, subli
tion line of Ref.@12#.
-

binodal line beneath the sublimation line, a circumstance
implies the metastability of the liquid-vapor equilibrium.

Some of the theories now show considerable discrep
cies with respect to the Gibbs ensemble Monte Ca
~GEMC! data of Ref.@12#. The GMSA result, in particular,
appears poor on both the liquid and the vapor branch of
coexistence line. The MHNC now sensibly overestimates
one side, and underestimates on the other, the coexist
liquid and vapor density, respectively. As a result, the sim
lation binodal falls well inside the MHNC one.

The SCOZA, as for the otherl ’s, is between the MHNC
and the GMSA, and maintains a reasonable agreement
the GEMC results. The HRT too is between the MHNC a
the GMSA at low temperature, but its critical temperature
higher than the SCOZA one. Note that the GEMC results
themselves subject to some uncertainty; in fact, the loca
of the binodal in the critical region via simulation is a d
manding task, and simulation results using finite-size sca
techniques that help assure quantitative precision, were
available to us from@15# for the l51.8 case.

We now focus our attention on the freezing line. As not
in Sec. III, previous studies by other authors@30,39,40# in-
dicate that the locus of vanishing multiparticle residual e
tropy, Ds50, corresponds with remarkable accuracy to t
freezing line of several model fluids. A detailed discussion
the physical meaning of theDs50 condition in relation to its
‘‘coincidence’’ with the freezing and other coexistence line
can be found in Refs.@30,40#. Here we restrict ourselves t
examining the related results for the HCYF by performi
whenever possible a comparison with the simulation resu

Calculations of theDs50 loci performed according to
different the theories are reported in Figs. 5–7. As we c
first see in Fig. 5, atl51.8 the MHNC, GMSA, and SCOZA
results fall quite close to each other, and to dens
functional theory@43#. A calculation of the freezing line per
formed by using the Hansen-Verlet freezing criterion@44#
with the SCOZA structure factor as input~whose results are
not displayed in the figure!, yields a freezing line that de
scends almost vertically down to a densityr50.94. The
triple-point temperature, determined from the intersection
the freezing line with the binodal line, is considerably belo
the critical one, thus indicating the existence of a very we
defined liquid pocket.

It is interesting to note that on the vapor side of the b
odal the MHNC and GMSADs50 locus practically falls on
the estimated coexisting vapor density line. We could
verify whether anything similar happens for densities clo
to the liquid branch of the binodal, because of numeri
difficulties in that density region. A trend ofDs to vanish
seems, however, conjecturable on the basis of the res
shown in Fig. 8~see Ref.@40# for a discussion about the
possible meaning of multiple vanishing of the multipartic
residual entropy!.

Results for theDs50 loci at l54 are shown in Fig. 6.
We can see that the GMSA falls fairly close to the compu
simulation line of freezing, by moderately overestimating t
freezing density. The MHNC and the SCOZA lines are
stead still almost vertical, as in thel51.8 case. We have
verified that calculations with the Hansen-Verlet criterion
yield a freezing line hardly different from the one atl

m

f.
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51.8. Similar remarks to those for thel51.8 case can be
made for the vanishing ofDs along the vapor side of the
binodal, as obtained within the MHNC and the GMSA.

The MHNC and SCOZADs50 loci atl57 ~see Fig. 7!
hardly differ from those at lowerl ’s. The GMSA curve,
instead, falls now very close to the simulation freezing lin
although it is not able to follow the trend to flatten of th
sublimation curve at low temperatures. It is interesting
note, however, that a portion of the GMSADs50 locus can
be obtained also in the vapor region, and this is located w
above the coexisting vapor density. We could not follow t
Ds50 behavior at intermediate densities due to numer
instability problems. An almost flat interpolation between t
two branches could, however, be reasonably assumed.
also interesting to note that atl57 the GMSA binodal is
located at temperatures that are sensibly smaller than t
of the Ds50 locus, in a way that resembles the relati
location of the binodal vs the sublimation lines obtain
through simulation.

Finally, as shown in Fig. 9, the GMSA locus atl59
shows a moderate dependence on the temperature at inte
diate densities, and qualitatively resembles the sublima
line predicted by simulation. The MHNCDs50 locus in

FIG. 8. Residual entropyDs for the HCYF withl51.8 andT
51.08 as a function of the density. Symbols: dashed line w
circles, GMSA; full line, MHNC. Note the scale on the right ind
cated by the arrow.

FIG. 9. Ds50 locus for the HCYF withl59. Symbols: full
squares: GMSA; open squares, sublimation line of Ref.@12#; open
circles: MHNC. The lines are guides for the eye.
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comparison stops at considerably higher densities and is
cated at lower temperatures. It is also interesting to note
at l57 the GMSA binodal is located at temperatures th
are sensibly lower than those of theDs50 locus, in a way
that resembles the relative location of the binodal vs the s
limation lines obtained through simulation.

V. CONCLUSIONS

Thermodynamic and structural properties, as well as
phase diagram of the HCYF have been investigated for
ferent values of the Yukawa screening parameterl. Calcu-
lations performed in the MHNC, in the GMSA with consis
tency constraints from all the three routes~fluctuations,
virial, and energy! from structure to thermodynamics, in th
SCOZA, and in the HRT, have been compared with o
another and with new and accurate computer simulation d
obtained for highl ’s.

The results presented here document the accuracy o
MHNC scheme in the prediction of both thermodynamic a
structural quantities of the HCYF in a very wide range
Yukawa screening parameters. The SCOZA, on the o
hand, is the best of the theories for directly predicting t
equation of state, and it turns out to retain its accuracy in
regard at the largerl ’s, even at high density and low tem
perature, which the other theories do not. The GMSA is r
sonably accurate for the thermodynamic quantities and
g(s) only at low l ’s. The HRT appears to be on a comp
rable level of accuracy.

As far as the phase diagram is concerned, at lowl ’s (l
51.8), that is, when the potential is not very short-rang
all the theories investigated reproduce with considerable
curacy the simulation phase diagram. At higherl ’s (l>4),
significant differences emerge in the performances of
various theories. The SCOZA is able to maintain good agr
ment with the computer simulation binodal, while the GMS
and the MHNC somewhat underestimate and overestim
respectively, the coexistence density on the liquid bran
the HRT also yields too high a critical temperature start
from l54.

In view of the good performances of the MHNC, esp
cially in predicting the structural properties of the HCYF,
seems worth trying to use accurate bridge functions, as th
for instance, obtainable from the bridge-functional approa
based on the fundamental measure theory recently prop
by Rosenfeld~see Ref.@46# for a recent review!. Calcula-
tions in this direction are in progress.

The success of SCOZA in predicting the equation of sta
despite its relative lack of contact-value accuracy, is a
quite striking. This turns out to be especially true in t
liquid-vapor critical region and leads to the most accur
overall binodals among the theories we have considered.
fact that the GMSA has not represented an overall impro
ment as a result of its more accurateg(s) via imposition of
virial-theorem self-consistency suggests that one should c
sider other means of incorporating that theorem. One wa
doing this is to let the range as well as the amplitude of
term relatingc(r ) andv(r ) differ from that ofv(r ), as dis-
cussed in Sect. IV of@4#. Another way to do this is suggeste
by the observation@45# that the function
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c~r !1bv~r !5h~r !2 ln g~r !1B~r ! ~16!

for a Lennard-Jones type fluid has the exact large-r form
Kh2(r ), which suggests using

c~r !52bv~r !1K1h2~r !1BHS~r !, ~17!

with K1 and the diameter of the hard-sphere bridge funct
BHS(r ) adjusted to yield compressibility-energy-virial se
consistency. This scheme could equally well be regarde
an alternative version of the GMSA.

Although the HRT does not impose self-consisten
among any of the three routes considered here, in its cur
implementation it resorts to a closure relation for the dir
correlation function similar to that used in SCOZA@see Eqs.
~9! and~12!#, the main difference being the way in which th
amplitude of the interaction contribution toc(r ) is deter-
mined. In particular, in both theories the profile of the ‘‘e
cess’’ direct correlation functionc(r )2cHS(r ) outside the
core is forced to followv(r ) at large as well as at smallr ’s.
Using an expression more suited to represent the structu
c(r ) even when it is expected to be very different from th
of v(r ), as is the case with a very short-ranged potent
appears to be a possible way of obtaining improved res
also in the context of the HRT.

We turn now to the ‘‘freezing criterion.’’ The freezing
line, as determined either from the vanishing of the resid
multiparticle entropyDs, or according to the Hansen-Verle
criterion, is not as satisfactorily predicted as the binodal li
In fact, the SCOZA and the MHNC yield a freezing dens
that is not significantly sensitive to the variation of the p
tential range, as is known, instead, to be the case from si
lation studies. These latter show that atl>7 the sublimation
line runs above the~metastable! binodal line, with the liquid-
vapor critical point falling just beneath the vapor-solid tra
sition line.

However, the GMSADs50 turns out to be able to follow
in a qualitative manner the modification of the freezing li
with l. In particular, atl59, the locus of vanishing residua
multiparticle entropy shifts well above the liquid-vapor c
existence line in a manner that fairly mimics the relati
location of the freezing and binodal line in thisl regime.

It should be noted that all of the integral-equation a
proximations we have studied here have only been fully
fined for the fluid state and not the solid state. As a res
strictly speaking, these approximations are silent as to
ol.
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location of the triple point and freezing line. They are al
silent with regard to the location of the vapor-solid coexi
ence curve defined for temperatures below the triple-po
temperature. Although we believe it is of considerable int
est to combine the results of the fluid-state approximati
with freezing criteria, such as theDs50 criterion, to predict
freezing and sublimation lines that can be compared to si
lation results, the quality of such predictions clearly cann
be used to rank the relative accuracy of the fluid theoriesper
se.

A natural way of extending the integral-equation theor
we consider to the solid phase is to incorporate in the th
ries the form that one expects of the direct correlation fu
tion for the crystal symmetry~or symmetries, if more than
one is in contention! associated with the expected solid. O
can then find the most stable phase for eachr and T by
comparing the free energy of the solid, or solids in conte
tion, with the fluid free energy, and selecting the minimu
This procedure is at the heart of those versions of dens
functional theory that incorporate Ornstein-Zernike form
ism. For the versions of the GMSA and the SCOZA cons
ered here this would entail using in place of the Yuka
form of Eqs.~6! and~9! an appropriately parametrized func
tional form that is consistent with the symmetry of the so
into which the HCYF is expected to freeze. For the MHN
or the modified SCOZA/GMSA given respectively by Eq
~3! and ~17!, one would instead use aBHS(r ) appropriate to
solid symmetry to characterize the solid phase.

Such generalizations represent a formidable comp
tional challenge, but our results here indicate that, on
basis of currently available freezing criteria, fluid-sta
integral-equation theories are not able to yield compara
results for fluid-solid phase separation when the attrac
term becomes extremely short-ranged.
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