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The self-consistent Ornstein-Zernike approximati&t€OZA), the generalized mean spherical approxima-
tion (GMSA), the modified hypernetted chaiMHNC) approximation, and the hierarchical reference theory
(HRT) are applied to the determination of thermodynamic and structural properties, and the phase diagram of
the hard-core Yukawa fluiHCYF). We investigate different Yukawa-tail screening lengthsanging from
\=1.8 (a value appropriate to approximate the shape of the Lennard-Jones pptential9 (suitable for a
simple one-body modelization of complex fluids like colloidal suspensions and globular protein soluttoms
comparison of the results obtained with computer simulation data shows that at relativelydaall the
theories are fairly accurate in the prediction of thermodynamic and structural properties; as far as the phase
diagram is concerned, the SCOZA and HRT are able to predict the binodal line and the critical parameters in
a quantitative manner. At=4 some discrepancies begin to emerge in the performances of the different
theoretical approaches: the MHNC remains, on the whole, reasonably accurate in predicting the energy and the
contact value of the radial distribution function; the SCOZA predicts well the equation of state up to the
highestA values investigated. The GMSA and the MHNC underestimate and overestimate, respectively, the
liquid coexisting density, while the SCOZA and HRT yield liquid branches that fall between the two former
theoretical predictions, although both appear to overestimate the critical temperature somewhat. At'sigher
the GMSA and MHNC binodals further worsen, while the SCOZA appears to remain usefully predictive. In
general, the predictions of all the theories tend to slightly worsen at low temperatures and high density. The
determination of the freezing line, performed by means of a one-phase “freezing crite(do’to other
authors is not particularly satisfactory within either the SCOZA or the MHNC; the GMSA prediction for the
freezing line at\=7 and 9 is instead able to follow in a qualitative manner the pattern of the solid-vapor
coexistence line as determined through computer simulation studies. The necessity of further assessments of
the freezing predictions is also discussed. Finally, versions of the GMSA, SCOZA, and HRT that can be
expected to be more accurate for interactions with extremely short-ranged attractions are identified.
[S1063-651%99)10911-3

PACS numbsdis): 61.20.Gy, 61.20.Ja

[. INTRODUCTION ment of the performances of several theories against com-
puter simulation data. Such comparisons have mainly con-
The hard-core Yukawa fluiHCYF) has been the object cerned thermodynamic propertig8—10], with estimates of
of a rather intense investigation in most recent yéseg| 1] phase coexistence conditions and predictions of critical be-
for a review. One reason for such an interest is that for thishavior[11-15; in particular, the modified hypernetted chain
model one has available analytic and semianalytic theorieteMHNC [16]) approximation and the semianalytic self-
(see[1-6] and references quoted thereihat allow one a consistent  Ornstein-Zernike  approximation(SCOZA
rapid investigation of its physical properties; on the other[4,5,15) have been applied in the low-value regime of the
hand, the potential parameters can easily be adjusted so asYokawa screening parameti&r[14,15, with a satisfactory
mimic more realistic interactions, such as, for instance, theeproduction of the liquid-vapor binodal line; the SCOZA
Lennard-Jones potentidl’]; the two circumstances allow also provides a good description of the critical point region,
then one to predict in a fairly easy, albeit approximate, manincluding the nonclassical critical exponent that describes
ner the properties of a number of real fluids. liquid-vapor coexistenc§l5,17. The liquid-vapor coexist-
The simplicity of the model has also prompted the assessnce line and the critical exponents are also accurately de-
scribed by the hierarchical reference the@RT [18—20),
which incorporates the renormalization-group treatment of
* Author to whom correspondence should be address. Electronithe critical region.
address: caccamo@vulcano.unime.it These studies have, however, been restricted to some spe-
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cific cases, and no systematic investigation of the accuracy ohterparticle potential is thus written as
different theories over wide ranges of temperatures, densities

and Yukawa screening parametardias, to our knowledge, v(r)y=e«, r<o,
hitherto been performed. In particular, an assessment of the (1)
accuracy of various theoretical approaches at high still v(r)=—ceexd —N(r—o)llr, r=o.

lacking; such a parameter regime is worth investigating since _ . _ i

it corresponds to very short-ranged potentials, a situation in 1 n€ properties of this model fluid are calculated in the
which the phase diagram of the fluid undergoes profoungPntéxt of the MHNC approximation and versions of the
modifications, with the disappearance of a stable liquid phasEMSA, the SCOZA, and the HRT, all of which are defined
[11,17. As documented in the current literature, a phase por2?€'0W. _

trait of this kind is of particular interest for the description of _ AS 1S well known, in the MHNC schem¢16], the
complex fluids like colloidal suspensions and protein solu-Ormnstein-Zernike equation

tions (see Ref[21], and references thergjnt has been ar-

gued, in fact, that the location of the binodal line just below h(l’)=C(I’)+pJ c(Jr=r'h(r")dr’, 2)

the sublimation line, a configuration in which the metastable

critical point is very close to the vapor-solid phase transition
boundary, might represent the most favorable condition for
controlled nucleation process in the fluid, and hence for . . .

regular growth of crystalf21,22. The latter circumstance is unction, respectively, is solved by means of the formally
certainly of great interest in protein solutions; in these sys—exaCt closure

here g(r) is the radial distribution functiofRDF) and
(r)=g(r)—1 andc(r) are the pair and direct correlation

tems, in fact, the crystallization procedures do frequently fail _ _ +h(r)— +B 3
to yield crystals of large enough size and quality to allow a g(r)=ex = Av(r)+h(r)—c(r)+B(r)]. ®
confident diffraction study of the molecular structys]. HereB(r) is the bridge function of the system under study

In view of the above considerations, we have undertakelgmd[;: 1KgT.
an extensive investigation of the thermodynamic and struc- e shall assume that the bridge function for the HCYF
tural properties, as well as of the phase diagram, of thean pe approximated by that of a hard-sphere fluid in the
HCYF, by assessing at the same time the performances @fercus-Yevick PY) approximation. As usual in the MHNC
the most advanced theories presently availdbleth semi-  scheme, we choose the hard-core diameter entering the defi-
analytic and iteratively solvablewe implement here a nu- pition of the PY bridge function so as to impose(artial
merical_solution procedure of a com_prehensive form of thechermodynamic consistency constraint on the theory.
generalized mean spherical approximati@MSA [2,24- Specifically, we require the equality of the isothermal

26]), which also embodies, as additive equations, the thersompressibilities as calculated according to the virial and
modynamic consistency constraints descending from all theompressibility routd27]; that is,

three routes connecting structure to thermodynamics in

liguid-state theorie$27]. The consistency is thus achieved JPVIr

only in terms of internal conditions. We also apply the (B ap

MHNC theory, as well as simple versions of the SCOZA and

the HRT; the solution schemes for these theories have been  ~ ) e )

developed elsewhere by other authors. Herec(g=0) is theg=0 limit of the Four_|er transf_orm of
Our analysis encompasses, in particularalues ranging ¢(F)- The solution of the system of equatiof8, (3) is ob-

from A=2, roughly corresponding to the Lennard-Jonest@ined through the well-known Gillan algorithi82].

fluid, up to A=9, a realistic screening length for HCYF In the .GMSA[Z’ZA'_ZG a closure to Eq(2) is obtained

modelizations of colloidal suspensions and protein solution®Y ©PServing that, because of Ed), one has

[12,28,29. The determination of the binodal is performed

according to conventional procedures. The freezing line is

determined on the basis of a one-pha_se “f_reezing criterion”’; g by assuming

proposed by other authof80]. Comparison is made, when-

ever possible, with phase diagrams obtained through com- c(r)=—pBv(r)+Kexd —z(r—o)]r, r=o, (6)

puter simulation by other authorgl1,12,15,3], supple-

mented by the production of a number of new simulationwherev(r) is given by Eq.(1), while K and z entering the

data for this same model. Yukawa function in Eq(6) are used as adjustable parameters
The paper is organized as follows: theories and simulatioiin order to impose the internal thermodynamic consistency

schemes are described in Sec. Il; the procedures for detesf the theory. Specifically, we impose in the GMSA the sat-

mining the lines of coexisting phases and the freezing lindsfaction of condition(4) and also

are briefly outlined in Sec. Ill. The results are reported and

discussed in Sec. IV. Section V contains our conclusions. (8F> v

) =1-pc(q=0). (4
T.p

g(r)=0, r<o, (5)

— Pvir' (7)
T

Il. MODEL, THEORIES, AND SIMULATION SCHEMES . . .
where the left-hand side of E§7) is the pressure obtained

We consider a fluid composed of hard-sphere particles ofrom the energy route by differentiating the Helmholtz free
diametero, interacting through an attractive Yukawa tail; the energyF, whose excess part with respect to the hard-sphere
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fluid F®is in turn obtained from the configurational energy c(r)=—ABv(r)+Kysexd —zys(r—o)]/r, r=o,
U® through standard thermodynamic integration along an 9

isochore path27]; that is, ) o
where we use the subscript HS to signify thais and zg

depend only on the presence of the hard-sphere core, inde-
B pendent ofv(r). The K5 and z,g are predetermined by
BF(p)= JO US(B',p)dB’. (8 settingv(r)=0 in Eq.(9) and requiring that both the com-
pressibility and the virial route to thermodynamics yield the
Carnahan-Starling equation of state for a hard-sphere fluid.

The isochore path integration starts from infinite tempera- '€ A in Ed. (9) is then obtained by requiring that the com-

ture (8=0), corresponding to the hard-sphere limit of the _pressib_ility and_energy routes yield the same thermodynam-
HCYF. The hard-sphere fluid free energy is in turn obtained®S’ which requires the consistency condition
by integrating the equation of state along an isothermal path J 2 ex
at infinite temperature starting from zero density up to the — _E(qzo):_z(_) ) (10)
density of interest; the Yukawa paramet&sndz are pro- B ap\ V /;
gressively adjusted along the path so as to reproduce the
Carnahan-Starlin§33] pressure and compressibility at each This in turn induces a consistency condition ugp, ) in
thermodynamic point. The hard-sphere Helmholtz free enthe form of a partial-differential equation that must be solved
ergy has thus the Carnahan-Starling value. numerically. For the Yukawa fluid considered here, this is
We have implemented the solution of the GMSA in amade simpler by the fact that within the closyg the rela-
fully numerical manner. Specifically, we have used ). tion between the inverse reduced compressibility gt(q
as a closure relation in an iterative solution procedure of the=0) and the excess internal energy* can be determined
integral equatior(2); the rationale for such a choice, which analytically[2,3]. The solution procedure has been described
does not make use of any of the more direct semianalyti¢n detail in Ref.[15].
solution schemes available in the literature, is that conditions The designations SCOZA and GMSA as used biyéio
(4) and (7) require in any case a numerical search of theand Stell are not mutually exclusive. In fact the GMSA in-
consistency parameters; we have thus found it advantageouvestigated here is identical to the more comprehensive ver-
to incorporate their fulfilment in the same numerical proce-sion of the SCOZA developed by/ile and Stell in Ref[5]
dure that solves Eq$2) and (6). that ensures self-consistency with respect to the virial equa-
It is worthwhile at this point to note that Stell,/Me, and  tion as well as the energy and compressibility equations.
their coauthors have used the term GMSA in a generic sense, For the sake of a more complete overview of theoretical
applied to a family of approximations, all of which have the results, we also include the results of some calculations per-
common feature of supplementing theBv(r) term appear- formed within the HRT; this approach, which does not have
ing in a direct correlation function(r) outside the core with  the structure of the other liquid-state integral-equation theo-
Yukawa terms. In some versions of the GM&ar example, ries, embodies the correct renormalization-group behavior as
those that have already been used to describe fluids ahe liquid-vapor critical point is approached.
charged spheres and dipolar sphé&34)), the amplitudes In the HRT the interparticle potential is first split into a
and ranges of the Yukawa terms are adjusted to yield selfshort-range, repulsive contributiong(r) and a longer-
consistency with thermodynamics given by prescribed equaranged, attractive one(r). For the hard-core plus tail inter-
tions of state that have been predetermined, rather than kyction considered here this is done trivially. The attractive
equations of state that are determined through the impositiopart is then turned on in a gradual fashion by introducing a
of self-consistency, as is the case here. This latter form of thehodified interactiowqg(r), such that its Fourier components
GMSA (which can also be regarded as a SCOZA, as notedith wave vectors smaller than a certain cutffare van-
below) is more demanding computationally, especially in theishing. In the resultingQ system long-range fluctuations
version used here that requires self-consistency among thgith characteristic length > 1/Q are then strongly inhibited.
energy, virial, and compressibility routes to thermodynamicsAs Q evolves fromQ=o, the interaction takes on its com-
The work reported here is the first quantitative study of thisponents of longer and longer wavelengths, until in the limit
particular version for the HCYF. An alternative version, in- Q—0 the fully interacting system is recovered. The corre-
troduced in Ref[4], that also involves consistency among sponding evolution of the Helmholtz free energy is described

the same three routes, has not yet been assessed. by the exact equation
The term SCOZA is also used by/k® and Stell in a
generic sense to apply to approximations in which one or J (BFo Q? BW(Q)
more state-dependent parameters are introduced into the re- E(T) = = , 11
lation betweerc(r) and— Bv(r) in such a way that thermo- 4 C(Q)

dynamic self-consistency gives rise to a differential equation ~

for one of the parameters, the solution of which y|e|ds theWhereW(k) is the~FOUrier transform of the attractive inter-
thermodynamics of the system. In the version of SCOZAaction, andF, andCq(K) are straightforwardly related to the
used here, there is only one paramefermultiplying the  Helmholtz free energ¥ o and to the Fourier transform of the
—Bv(r) term outside the core; but there is a second termdirect correlation functiortg(r) of the Q system. Equation
also of Yukawa form, that represents the contribution(ig (11) is closed by resorting to an approximation similar to Eq.
outside the core from the hard-sphere core itself, (9). Specifically, we assume



5536 CACCAMO, PELLICANE, COSTA, PINI, AND STELL PRE 60

Jo(r)=0, r<o, (12 locating a binodal and critical point may well be intrinsic to
such theories rather than an artifact of our numerical proce-
Colr)=BoBwW(r)+cg(r), r=a, dure(in the HNC approximation, for example, there appears

to be no critical point at which the compressibility computed
wherecg, is the direct correlation function of the hard-spherevia the compressibility relation divergd87,3g). On the
fluid, as given, for instance, by the Verlet-Weis parametriza-other hand, the study of the analytic structure of the GMSA
tion [35]; andBy, is determined so as to satisfy the compressimade in[5] strongly suggests that the GMSA is an approxi-

ibility sum rule mation for which the binodal is well defined in the critical
region and at a critical point, which can in principle be lo-
~ 92 BFo cated with arbitrarily high precision, just as in the SCOZA.

Co(k=0)= E( - T) : 13 By adopting an approach originally proposed in R86)],

we also locate the onset of freezing in our HCYF by moni-

This can be regarded as a consistency condition between tlﬁ%rgég ;Qe behavior of the multiparticle residual entropy, de-

compressibility route and a rout@ifferent from all the
above-mentioned ong@ which the thermodynamics is de- As=s,—S, (14)
termined from the Helmholtz free energy as obtained from e '

Eq. (11). The latter yields then a partial-differential equation wheres,, is the the excess entropy per particle of the system

for ]:Q' which is integrated numerically starting fro@ in units of the Boltzmann constant, and
=o down toQ—0. We refer the reader to the related litera-

ture for more detail$18—20. 1
Finally, a number of conventional constant-temperature, Sp=— §PJ {g(r)Infg(r)]—g(r)+1}dr. (15
constant-volume Monte Carl@MC [36]) simulations have

been performed. As detailed in Sec. IV, quite large system According to previous results reported in the literature
samples, enclosed in cubic boxes with periodic boundary3p,39, it turns out that the vanishing dfs acts as a quite
conditions, are employed in this context, in order to get acsensitive indicator of the freezing transition in several one-
curate estimates of various thermodynamic quantities of incomponent fluids. The possibility that this same condition
terest. Whenever necessary long-range corrections have begsn be associated with structural rearrangements that herald

adopted in order to correct for truncation effects at the bO)bther types of phase separaﬂons has also been discussed else-
boundaries on the radial distribution function. The isotherhere[40].

mal compressibility is also calculated by generating the
equation of state of the fluid through a series of constant

. . . . IV. RESULTS AND DISCUSSION
volume simulations along an isotherm, with an accurate sam-

pling centered at the density of interest. In what follows we shall measure the distance, the den-
sity, and the temperature, in o 3, ande/kg units, respec-
IIl. THEORETICAL PROCEDURES FOR THE tively. Other quantities of interest are similarly expressed in
DETERMINATION OF THE PHASE DIAGRAM the appropriate reduced units.

The liquid-vapor coexistence curve is determined straight-
forwardly in the HRT, since the conditions of chemical equi-
librium between the two coexisting phases are implemented The GMSA, MHNC, SCOZA15], and HRT predictions
by the theory itself. In fact, below the critical temperaturefor the HCYF with A =1.8 are compared with one another
this approach yields a vanishing inverse compressibility ané@nd with MC results obtained with the use of 2000 particles.
rigorously flat isotherms inside a certain domain of the phas&€omparison with previous computer simulation dg&dl0],
plane, which is then identified with the coexistence region. obtained with a few hundred particles is also reported. Three

In the GMSA, MHNC, and SCOZA the determination of different temperature§,=1.0, 1.5, and 2.0, have been inves-
the liquid-vapor coexistence line is instead performed bytigated along the same isochgse=0.80; as will appear in
equating the chemical potential at equal temperature angec. IV B, the first state pointT(=1.0p=0.8) falls deep
pressures on the liquid and vapor side of the binodal, respednside the liquid pocket of the system; Bt 1.50 the system
tively. The chemical potential is obtained from the Helm-is instead already in a supercritical dense phase. Thermody-
holtz free energy calculated either by integrating the pressureamic results are shown in Fig. 1.
along an isothermal path, or by integrating the configura- Several comparisons between all four theories and simu-
tional energy with respect to the inverse temperature alontftion have been performed also for the case4, along the
an isochore pathsee Eq.(8)]. isochorep=0.816, a density that falls just before the freez-

In implementing such a procedure, it happens that bothng line [11] (see below and at temperatures ranging from
the MHNC and the GMSA solution algorithms fail to con- inside the liquid pocket of the phase diagram (@b
verge at a thermodynamic consistent solution in the criticakl0.625) up to a supercritical statd £1.0). MC simula-
point region; as a consequence, we cannot display results féions are performed on a sample composed of 1500 atoms.
the binodal from these two theories on a restricted temperaResults are displayed in Fig. 2.
ture range close to the critical temperature. In light of earlier More extensive investigations have been performed for
results that have already come out of both theoretical and =9. GMSA, SCOZA, and MHNC predictions are assessed
computational studies of HNC-type theories, this difficulty in against MC dataobtained on a sample of 512 partidles

A. Thermodynamic and structural properties
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FIG. 1. Internal energy per particle, equation of s@te), and FIG. 2. Same as Fig. 1 for the case=4.

the compressibility(in reduced unitsfor the HCYF withA=1.8.
Symbols: circles, MHNC; triangles, GMSA; squares, SCOZA, dia- L . ) )
monds, HRT; crosses, MC simulations. Error bars on the simulatioscheme is implemented with the use of PY bridge functions

data are smaller than the relative marker size. in the prediction of both thermodynamic and structural quan-
tities of the HCYF on a very wide range of Yukawa screen-
along the isochorep=0.5 andp=0.7, fromT=0.80, well  ing parameters. In particular, the MHNC turns out to be able

above the sublimation linéas estimated by other authors to reproduce in a practically quantitative manner the simula-
[12]) to T=0.45. Results are visualized in Fig. 3. Radial tion data for the energy at all the's investigated, and on a
distribution functions are collectively shown for alfs in- very wide range of temperatures and densities. The same
vestigated in Fig. 4. theory is slightly less accurate in predicting the pressure, the
One first important feature of the results previously re-compressibility, and the contact values of the radial distribu-
ported is the accuracy of the MHNC approdethich in our  tion function. It seems remarkable that such a good perfor-
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04 05 06 07 08 oo contact RD_IF. 1:h|s perhaps accounts for the pagiio) esti
T mates at high\’s.

The GMSA embodies in principle a full thermodynamic
FIG. 3. Equation of state and compressibility factor for the consistent treatment; it does not seem, however, that this is
HCYF with A =9. Results along the isochorps=0.50(top panels  sufficient to make the theory accurate at\aB. The fact that
and p=0.70 (bottom panelsare displayed. Symbols as in Fig. 1. the compressibility predictions are relatively less accurate
than the pressure and the contact RDF, together with the
mance can be obtained by imposing a single thermodynamifcreasingly poor representation gfr) at larger, indicate
consistency constraint. that, despite the link to two consistency constraints, the
The SCOZA, on the other hand, is the best of the theorieadopted closure is not able to entirely cope with the interplay
for directly predicting the equation of state, and it turns outbetween short- and long-range effects in the interaction po-
to retain its accuracy in this regard at the largés, even at  tential. This is perhaps not surprising in light of the fact that
high density and low temperature. The SCOg&) is rea-  the two parameterk andz of the GMSA shown in Eq(6)
sonably good at lowx’s but shows a trend toward overesti- are being asked to play an even more comprehensive ther-
mating the amplitude of the oscillations, and also towardmodynamic role than the three SCOZA paramefefis,s,
moderately losing the phase whenincreases; the main de- and z,g, in Eq. (9). In the SCOZA, theK,,s and z,5 are
ficiency is the poor estimate of the contact RDF at higlin ~ dedicated to accurately and self-consistently taking into ac-
relation to this point, it is to be noted that, although thiscount the hard-core contribution to the thermodynamics, so
theory embodies an accurate representation of the hardhat A need only accommodate itself to the energy-
sphere fluid properties at the level of the Carnahan-Starlingompressibility self-consistency of the thermodynamics that
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pears then to become less and less reliable axreases.

B. Phase diagram

The phase diagram at=1.8 is shown in Fig. 5. It ap-
pears that all the theories reproduce rather satisfactorily the
binodal curve as obtained in RdfL5] through a finite-size
scaling Monte Carlo simulation techniq{1].

: In particular, as already reported in REE4], the binodal
¢ is well predicted by the MHNC, although the density of the
coexisting liquid phase is slightly overestimated. The oppo-
site behavior is shown by the GMSA. The results from the
SCOZA, previously obtained elsewhe®5], and from the
HRT, turn out to be “bracketed” by the two former theories,
and appear as the most satisfactory. Both the SCOZA below
, the critical point[15,17 and the HRT yield nonclassical
0 . critical exponents; their estimates for the expongnthat
describes the shape of the binodal curve are 7/20.35
: e and 0.345, respectively. The best renormalization-group es-
‘ WL timate of this value is in the neighborhood of 0.322]. The
07 | L L L L performances of the different theories on the vapor branch of
0.2 0.4 06 0.8 1 the binodal are also very accurate, as seen in Fig. 5.
The critical parameters predicted by the various theories
P at \=1.8 are reported in Table I. As noted in Sec. Il, the

FIG. 5. Theoretical and finite-size scaling MC results for the MHNC and GMSA iterative algorithms become unable to
phase diagram of the HCYF with=1.8. Liquid-gas coexistence: Yield a thermodynamic consistent solution for temperatures
dotted line, SCOZA; triangles, HRT; full circles, GMSA; open t00 close to the critical one. For this reason the GMSA and
circles, MHNC; pluses, finite-size scaling MC of R¢ll5]. As  the MHNC entries are deduced from a power-law interpola-
=0 locus(freezing: dotted line, SCOZA; full line, MHNC; dashed tion of the available points performed with the nonclassical
line, GMSA; diamonds: freezing line foh=2 according to critical exponent3=0.32, together with the application of
density-functional calculations of Rd#3]. the law of rectilinear diameters. At=1.8 the SCOZA15]

and the HRT are in quantitative agreement with simulation.
results from the additional presence of the soft tail of the paiThe GMSA is also quite accurate. The MHN@&Iso investi-
potential. In the GMSA, on the other hand, tkeandz must  gated in Ref[14]) is quite good but slightly inferior to the
assure that the thermodynamics of both the hard-core controther three theories.
bution tov(r) and its soft Yukawa tail together yield full Some of the theoretical trends emerging\at 1.8 herald
virial-energy-compressibility self-consistency. This appearsmore pronounced deviations from the simulation results at
to be too demanding a task to be met with high accuracy by =4. This is visible in Fig. 6, where it appears that, on the
the simple form of the single Yukawa term in E@). liquid side of the binodal, the MHNC moderately overesti-

The HRT is accurate in the prediction of thermodynamicmates and the GMSA sensibly underestimates, respectively,
guantities up tox=4. We have verified, however, that be- the densities of the coexisting phases. The SCOZA is again
yond this value its accuracy decreases, as we shall see beloin, between the two theories; the same is true also for the
where other HRT results will be reported. Since Efl) is  HRT, but only up to intermediate temperatures. In fact,
exact, this must be regarded as a consequence of the approabove T=0.55 the HRT binodal is external to the MHNC
mation intrinsic in the closure relatiof12). The latter ap- one. The critical temperature and density predicted by the

’ o

0.9

0.8 |

(=3

TABLE I. Theoretical and simulation critical point parameters.

A=18 A=4.0 A=7.0
Tcr Per Tcr Pecr Tcr Per

MC 1.212(2)2 0.312(2)2 0.576(6)° 0.377(21)° 0.411(2)° 0.50(2)°
GMSA 1.199 0.312 0.576 0.324
MHNC 1.193 0.326 0.581 0.412
MHNCH 1.21 0.28
HRT 1.214 0.312 0.599 0.394 0.435 0.424
SCOZA 1.219 0.314 0.591 0.3895 0.419 0.4575

Finite-size scaling MC simulation of Ref15].

bGibbs-ensemble MC simulations of REL1].

‘Gibbs-ensemble MC simulations of R¢L2].

dMHNC calculations with Verlet-Weis bridge functions of RE£4].
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06 [~~~ T & A T binodal line beneath the sublimation line, a circumstance that
A T T hy implies the metastability of the liquid-vapor equilibrium.
’ [+ | Some of the theories now show considerable discrepan-
i cies with respect to the Gibbs ensemble Monte Carlo
: (GEMC) data of Ref[12]. The GMSA result, in particular,
‘f ! appears poor on both the liquid and the vapor branch of the

| coexistence line. The MHNC now sensibly overestimates on
PRI one side, and underestimates on the other, the coexistence
IR I . liquid and vapor density, respectively. As a result, the simu-
N lation binodal falls well inside the MHNC one.

o o The SCOZA, as for the othex’s, is between the MHNC
oW ] and the GMSA, and maintains a reasonable agreement with
o [0 | the GEMC results. The HRT too is between the MHNC and
[ the GMSA at low temperature, but its critical temperature is
o5 ['% ] higher than the SCOZA one. Note that the GEMC results are
6 Tl themselves subject to some uncertainty; in fact, the location

u of the binodal in the critical region via simulation is a de-

; IR manding task, and simulation results using finite-size scaling

O ; .'\IOS techniques that help assure quantitative precision, were only

' ' ‘ ‘ e available to us fronj15] for the A =1.8 case.

' ' We now focus our attention on the freezing line. As noted
p in Sec. lll, previous studies by other auth$&9,39,4Q in-

FIG. 6. Theoretical and simulation results for the phase diagramlicate that the locus of vanishing multiparticle residual en-
of the HCYF with A =4. Liquid-gas coexistence: horizontal bars, tropy, As=0, corresponds with remarkable accuracy to the
Gibbs-ensemble MC results of ReL1J; other symbols as in Fig. 5. freezing line of several model fluids. A detailed discussion of
As=0 locus (freezing ling: dash-dotted line, results of RefL2] the physical meaning of thes=0 condition in relation to its

0.58
0.56
0.54

0.52

0.48 [®

for A=3.9; other symbols as in Fig. 5. “coincidence” with the freezing and other coexistence lines,
. . . . : can be found in Ref4.30,40. Here we restrict ourselves to
different theories are still quite satisfactolgee Table )l examining the related results for the HCYF by performing

The case withh =7 is now considered. The related results
are shown in Fig. 7. Note that the computer simulation relV
sults, known from previous studi¢$2], show the shift of the

henever possible a comparison with the simulation results.
Calculations of theAs=0 loci performed according to
different the theories are reported in Figs. 5—7. As we can
first see in Fig. 5, at = 1.8 the MHNC, GMSA, and SCOZA
results fall quite close to each other, and to density-
functional theory{43]. A calculation of the freezing line per-

08 [ c formed by using the Hansen-Verlet freezing criteriagi]
e with the SCOZA structure factor as inpwhose results are
;'o not displayed in the figuje yields a freezing line that de-
07 F Ix A scends almost vertically down to a densjiy=0.94. The
L triple-point temperature, determined from the intersection of
T the freezing line with the binodal line, is considerably below
i © 7] thecritical one, thus indicating the existence of a very well-
08 o defined liquid pocket.
toooe It is interesting to note that on the vapor side of the bin-
B 2 odal the MHNC and GMSA\s=0 locus practically falls on
05 [ oot ° 7 the estimated coexisting vapor density line. We could not
g S ; verify whether anything similar happens for densities close
g, v, A8 s @ b to the liquid branch of the binodal, because of numerical
04 | Tt . AAA oo difficulties in that density region. A trend afs to vanish

shown in Fig. 8(see Ref.[40] for a discussion about the
possible meaning of multiple vanishing of the multiparticle
03 w w w . ) residual entropy
Results for theAs=0 loci at \=4 are shown in Fig. 6.
P We can see that the GMSA falls fairly close to the computer

FIG. 7. Phase diagram for the HCYF with=7. Liquid-gas  Simulation line of freezing, by moderately overestimating the
coexistence: horizontal bars, Gibbs-ensemble MC results of Reffeezing density. The MHNC and the SCOZA lines are in-
[12]; other symbols as in Fig. s=0 locus: diamonds, SCOZA; stead still almost vertical, as in the=1.8 case. We have
pluses, GMSA; crosses, MHNC; dashed line with squares, sublimaverified that calculations with the Hansen-Verlet criterion do
tion line of Ref.[12]. yield a freezing line hardly different from the one at

AB
Jox 4 — . .
— * . 5A§;~ 4 seems, however, conjecturable on the basis of the results
A \
X
A
A

=}
=}
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~
=}
»
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©
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0.015 T T T T 0.2 comparison stops at considerably higher densities and is lo-
1o cated at lower temperatures. It is also interesting to note that
0.01 ' at \=7 the GMSA binodal is located at temperatures that
do are sensibly lower than those of thes=0 locus, in a way
n that resembles the relative location of the binodal vs the sub-
q 0005 11 limation lines obtained through simulation.
-4 -0.2
0 V. CONCLUSIONS
4 -03
Thermodynamic and structural properties, as well as the
-0.005 : ' : : 0.4 phase diagram of the HCYF have been investigated for dif-
0 0.2 0.4 0.6 0.8 ! ferent values of the Yukawa screening paramate€Calcu-
P lations performed in the MHNC, in the GMSA with consis-

FIG. 8. Residual entropys for the HCYF withA =1.8 andT tgr_my constraints from all the three routéﬁuctL_Jatlo_ns,
=1.08 as a function of the density. Symbols: dashed line withVili@l, and energyfrom structure to thermodynamics, in the
circles, GMSA, full line, MHNC. Note the scale on the right indi- SCOZA, and n the HRT, have been Compafed Wllth one
cated by the arrow. another and with new and accurate computer simulation data

obtained for high\'s.

=1.8. Similar remarks to those for the=1.8 case can be The results presented here document the accuracy of the
made for the vanishing oAs along the vapor side of the MHNC scheme in the prediction of both thermodynamic and

binodal, as obtained within the MHNC and the GMSA.  structural quantities of the HCYF in a very wide range of
The MHNC and SCOZA\s=0 loci atA=7 (see Fig. 7 = Yukawa screening parameters. The SCOZA, on the other
hardly differ from those at lowei’s. The GMSA curve, hand, is the best of the theories for directly predicting the
instead, falls now very close to the simulation freezing line,equation of state, and it turns out to retain its accuracy in this
although it is not able to follow the trend to flatten of the regard at the largex’s, even at high density and low tem-
sublimation curve at low temperatures. It is interesting toperature, which the other theories do not. The GMSA is rea-
note, however, that a portion of the GMS¥s=0 locus can sonably accurate for the thermodynamic quantities and for
be obtained also in the vapor region, and this is located welyj(s) only at low\’s. The HRT appears to be on a compa-
above the coexisting vapor density. We could not follow therable level of accuracy.
As=0 behavior at intermediate densities due to numerical As far as the phase diagram is concerned, atAdsv(\
instability problems. An almost flat interpolation between the— 1 g) that is, when the potential is not very short-ranged,
two branches could, however, be reasonably assumed. It i§| the theories investigated reproduce with considerable ac-
also interesting to note that at=7 the GMSA binodal is curacy the simulation phase diagram. At highés (\>4),
located at temperatures that are sensibly smaller than thogificant differences emerge in the performances of the
of the As=0 Iocqs, in a way that (esembles the rel"’?t'vevarious theories. The SCOZA is able to maintain good agree-
Lﬁfgﬂoﬁ s?;]tl?:tig:]mdal vs the sublimation lines ObtalneOIment with the computer simulation binodal, while the GMSA
9 ‘ and the MHNC somewhat underestimate and overestimate,

Finally, as shown in Fig. 9, the GMSA locus at=9 . : : o i
shows a moderate dependence on the temperature at intern} spectively, the coexistence density on the liquid branch;

diate densities, and qualitatively resembles the sublimatioﬁ € HRT also yields too high a critical temperature starting

. . . : - . fromA=4.
line predicted by simulation. The MHN@s=0 locus in In view of the good performances of the MHNC, espe-

cially in predicting the structural properties of the HCYF, it
seems worth trying to use accurate bridge functions, as those,
for instance, obtainable from the bridge-functional approach
based on the fundamental measure theory recently proposed
by Rosenfeld(see Ref[46] for a recent review Calcula-
tions in this direction are in progress.

The success of SCOZA in predicting the equation of state,
despite its relative lack of contact-value accuracy, is also
quite striking. This turns out to be especially true in the
liquid-vapor critical region and leads to the most accurate
overall binodals among the theories we have considered. The
fact that the GMSA has not represented an overall improve-
ment as a result of its more accuraffer) via imposition of
virial-theorem self-consistency suggests that one should con-

P sider other means of incorporating that theorem. One way of
doing this is to let the range as well as the amplitude of the

FIG. 9. As=0 locus for the HCYF with\=9. Symbols: full  term relatingc(r) andv(r) differ from that ofv(r), as dis-
squares: GMSA; open squares, sublimation line of REZ]; open  cussed in Sect. IV di4]. Another way to do this is suggested
circles: MHNC. The lines are guides for the eye. by the observatiofid5] that the function
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c(r)+pBv(r)=h(r)—Ing(r)+B(r) (16) location of the triple point and freezing line. They are also
silent with regard to the location of the vapor-solid coexist-
for a Lennard-Jones type fluid has the exact largerm  ence curve defined for temperatures below the triple-point

Kh?(r), which suggests using temperature. Although we believe it is of considerable inter-
) est to combine the results of the fluid-state approximations
c(r)==pBv(r)+Kih*(r)+Byg(r), (17)  \with freezing criteria, such as thies=0 criterion, to predict

freezing and sublimation lines that can be compared to simu-

with K, and the dlam.eter of the har.djs_phere bndgg funcnor]ation results, the quality of such predictions clearly cannot
Bs(r) adjusted to yield compressibility-energy-virial self- | <o y't6 ' rank the relative accuracy of the fluid thequars

consistency. This scheme could equally well be regarded as,

an alternative version of the GMSA A natural way of extending the integral-equation theories
Although the HRT does not impose self-consistency y 9 9 N

among any of the three routes considered here, in its currenfs consider to the solid phase is to mporporate in .the theo-
ries the form that one expects of the direct correlation func-

implementation it resorts to a closure relation for the direCttion for the crystal symmetryor symmetries, if more than

correlation function similar to that used in SCOZgee Egs. one is in contentionassociated with the expected solid. One
(9) and(12)], the main difference being the way in which the can then find the most stable phase for eacand T by

amplitude of the interaction contribution t(r) is deter- : ; o

mined. In particular, in both theories the profile of the “ex- qompa_n;lghtheﬂ frgi energy of the golldl, or SOI'ES In conten-
cess” direct correlation functiore(r) —cpg(r) outside the tion, with the fluid free energy, and selecting the minimum.
core is forced to follow(r) at large as well as at smals This _procedure is at the heart of those versions of density-
Usin . ited t t the st t fonctlonaI theory that incorporate Ornstein-Zernike formal-
g an expression more sulted 1o represent e SIUCIUIe ., =4 the versions of the GMSA and the SCOZA consid-
c(r) even when Itis expec_ted to be very different from th.atered here this would entail using in place of the Yukawa

of v(r), as i'JS the cas_glwnh a \:,e% shqrt-rgnged pgten“"’}lform of Egs.(6) and(9) an appropriately parametrized func-
Zfs%eﬁ]r?htg coen{ae )E)tojﬂh; ;VS}I/_ of obtaining improved resu tﬁonal form that is consistent with the symmetry of the solid
We turn now to the “freezi.ng criterion.” The freezing into which the HCYF is expected to freeze. For the MHNC

) r the modified SCOZA/GMSA given respectively by Egs.

Ilnellfas Selterm|tned thher from tzg Va}tn'?::ma of the :/esudt:a 3) and(17), one would instead useByg(r) appropriate to
mutiparticie entropyas, or according to € Hansen-veret ¢q;q symmetry to characterize the solid phase.

criterion, is not as satisfactorily predicted as the binodal line. o -
' . ) . Such generalizations represent a formidable computa-
:E;?IC; r:g?ssicn(a‘ignatllndstgr?si'\t/il\ljel\lt% ¥;1(aeldv:r{;(fiiilno?‘ ?ﬁ;s'gtional challenge, but our results here indicate that, on the
9 y PO hasis of currently available freezing criteria, fluid-state

tential range, as is known, instead, to be the case from SMYfftegral-equation theories are not able to yield comparable

:_at|0n StUd'beS' T?ﬁgﬁ l?tt?rsl?g%w tr:ja?l‘?7 thiﬁ‘:ﬁl”pat'%n results for fluid-solid phase separation when the attractive
i€ runs above ¢lastablpbinoda’ ine, Wi elquid- " torm pecomes extremely short-ranged.

vapor critical point falling just beneath the vapor-solid tran-
sition line.
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